brain_pipe.preprocessing.stimulus.audio.envelope.GammatoneEnvelope

class GammatoneEnvelope(stimulus_data_key='stimulus_data', stimulus_sr_key='stimulus_sr', output_key='envelope_data', power_factor=0.6, min_freq=50, max_freq=5000, bands=28, **kwargs)

Bases: PipelineStep

Calculates a gammatone envelope.

__init__(stimulus_data_key='stimulus_data', stimulus_sr_key='stimulus_sr', output_key='envelope_data', power_factor=0.6, min_freq=50, max_freq=5000, bands=28, **kwargs)

Initialize the gammatone envelope FeatureExtractor.

Parameters:
  • power_factor (float) – The power factor for each sample

  • target_fs (int) – The target sampling frequency

Methods

__init__([stimulus_data_key, ...])

Initialize the gammatone envelope FeatureExtractor.

parse_dict_keys(key[, name, ...])

Parse a key or a sequence of keys.

parse_dict_keys(key: str | Sequence[str] | Mapping[str, str], name='key', require_ordered_dict=False) OrderedDict[str, str]

Parse a key or a sequence of keys.

Parameters:
  • key (Union[str, Sequence[str], Mapping[str,str]]) – A key or a sequence of keys.

  • name (str) – The name of the key. Used for error messages.

  • require_ordered_dict (bool) – If True, the key must be an OrderedDict. If False, the key can also be an ordinary dict.

Returns:

A mapping of input keys to output keys.

Return type:

OrderedDict[str, str]

Raises:

TypeError – If the key is not a string, a sequence of strings or a mapping of strings. If the key is a mapping but require_ordered_dict is True and the mapping is not an OrderedDict.